Abstract

AbstractThe flow about submerged, fully cavitating axisymmetric bodies at both zero and non‐zero angle of attack is considered in this paper. A cavity closure model that relates the point of detachment, the angle that the separating streamline makes with the body and the cavity length is described. The direct boundary element method is used to solve the potential flow problem and to determine the cavity shape. A momentum integral boundary layer solver is included in the formulation so that shear stresses can be incorporated into the drag calculations. The numerical predictions based on the proposed closure model are compared with water tunnel measurements and photographs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.