Abstract

This article offers a parametric mechanics investigation in defining the correlation between the parameters of a wing-body during a bird strike collision. A commercial software of LS-Dyna is used to compute the numerical modelling manifested in this research. In this study, it is an attempt to form a definitive work based on the Smoothed Particle Hydrodynamics (SPH)formulation by recognising the most critical influencing parameters in the bird-strike computation and verify the simulation with the experiment data. For instance, an idealised bird is modelled as a cylindrical shape with hemispherical ends to maintain the homogeneity and symmetryusing SPH approach. Moreover, an aluminium alloyrigid flatplate is modelled as a shell element plate in the finite element model (FEM). Here, internal energy vs time for different plate thickness graph are plotted to observe the difference of absorbed energy during the impact. Such conditions are considered in this research from the sight of bird strike impact under multiple states (structural thickness) and constraints (bird size). The obtained computational results are in adjacent agreement with the experimental results published in another literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.