Abstract
In this work, an efficient, flexible, accurate and stable algorithm to numerically model interacting acoustic–elastodynamic sub-domains is described. Stabilized time-domain boundary element techniques are considered to discretize each sub-domain of the model and proper numerical expressions on acoustic–elastodynamic interfaces are presented. Moreover, stabilized iterative coupling procedures are adopted and different time and space sub-domain discretizations are allowed, improving the robustness and versatility of the methodology. At the end of the paper, numerical results are presented, illustrating the potentialities of the proposed formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.