Abstract

• A novel heat exchanger layout for electric vehicle application is presented. • The aerodynamic performance of an EV equipped with the proposed system is assessed. • Comparisons of thermal/electrical layouts show a 5% reduction of the vehicle’s drag. • A net reduction of the vehicle weight is achieved with the newly designed system. • This work describes a proposal for a new form of heat exchanger packaging. Computational Fluid Dynamics has emerged as one of the major investigative tools for aerodynamics and thermal analyses of today’s road vehicle design processes. This work presents the design of a new heat exchanger layout that could support the transition from thermal to electrical propulsion of an existing motor vehicle. A procedure is established to develop and assess a heat exchanger prototype. The aerodynamic performance of an electric vehicle equipped with the above-mentioned heat exchanger is assessed numerically, and results compared with its thermal counterpart. The comparison between both layouts shows a 5% reduction of the vehicle’s drag and a net reduction of the overall weight with the newly designed system, introducing the proposal for a new form of heat exchanger packaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.