Abstract

A numerical technique for fluid-structure interaction, which is based on the finite element method (FEM) and computational fluid dynamics (CFD), was developed for application to an industrial chimney equipped with a pendulum tuned mass damper (TMD). In order to solve the structural problem, a one-dimensional beam model (Navier-Bernoulli) was considered and, for the dynamical problem, the standard second-order Newmark method was used. Navier-Stokes equations for incompressible flow are solved in several horizontal planes to determine the pressure in the boundary of the corresponding cross-section of the chimney. Forces per unit length were obtained by integrating the pressure and are introduced in the structure using standard FEM interpolation techniques. For the fluid problem, a fractional step scheme based on a second order pressure splitting has been used. In each fluid plane, the displacements have been taken into account considering an Arbitrary Lagrangian Eulerian approach. The stabilization of convection and diffusion terms is achieved by means of quasi-static orthogonal subscales. For each period of time, the fluid problem was solved and the geometry of the mesh of each fluid plane is updated according to the structure displacements. Using this technique, along-wind and across-wind effects have been properly explained. The method was applied to an industrial chimney in three scenarios (with or without TMD and for different damping values) and for two wind speeds, showing different responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.