Abstract
If the bearing capacity of the soil is not sufficient an improvement method has to be considered. In case of soft and cohesive soils the vibroreplacement technique can be used. This paper describes the numerical simulation of a group of encased granular columns under an embankment based on a real life project situated to the north of Hamburg, Germany. The soft soil creep model and the hardening soil model were used to model the behaviour of the soft clay and granular material respectively. The material parameters were determined based on laboratory tests conducted on test samples from the field. The installation effect of columns in numerically modelled based on the cavity expansion method in a 2D axis symmetric model. The results of the installation effect in terms of stress state changes in the soft soil after complete consolidation are then imported to the 3D model involving group of columns. The results of the numerical simulations are validated against field measurement data in form of vertical settlement of the ground at various locations with respect to time and horizontal deformations in the encased columns with depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.