Abstract

Vehicle restraint systems are vital hardware elements in road safety engineering. The certification process of a vehicle restraint system includes full-scale crash tests, component testing and numerical simulation of these tests. To achieve reliable crash test simulation results, the soil–post interaction must be modelled to capture the behaviour realistically. There is no standardised approach for modelling the soil–post interaction in the praxis. In this study, the finite element method is utilised to investigate the soil–post response under quasi-static and dynamic impact loading. Two different modelling techniques are applied for this purpose. The first technique is the finite element continuum method, with the soil modelled using the advanced hypoplastic constitutive relation and calibrated using laboratory test data. The second technique is a lumped-parameter model, for which a systematic parameters calibration routine using basic soil properties is introduced. The numerical models are validated using a series of full-scale field tests performed by the authors on single posts in standard road shoulder materials. The performance comparison of the investigated modelling techniques shows that the hypoplastic constitutive relation can capture the post behaviour realistically under different loading conditions using the same parameter set. The introduced lumped-parameter model adequately simulates the post behaviour with high computational efficiency, which is very important when simulating several posts. The conducted parametric study elucidates that the soil’s relative density, the post’s embedment length, and the post-section modulus govern the single post’s lateral load-bearing behaviour and energy dissipation capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call