Abstract
The process of coral larval dispersal is important for coral reef ecosystems, but remains poorly understood and hard to gauge. Better knowledge of inter-reef connectivity patterns would be useful in enabling better management of coral reef waters however. By employing a spatially explicit numerical modelling approach, we simulate larval dispersal through the central section of the Great Barrier Reef (GBR), comprising over 1000 reefs, and identify spatial patterns in the inter-reef connectivity network using a community detection method from network science. This paper presents the modelling approach used and discusses the significance of the results.Inter-reef connectivity networks were estimated for 4 different coral species, and significant differences between them were found. We show how we can partition reefs into clusters, or “communities”, that are sparsely connected with each other, and therefore identify important barriers to larval dispersal. By fine-tuning a resolution parameter in the community detection method, we can find dispersal barriers of varying strength. Finally, we show that the average connectivity length scale varies significantly across the different reef communities, and suggest that this may have repercussions for the optimal placement of marine protected areas (MPAs) to maximise connectivity with surrounding reefs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.