Abstract

The objective of this study was to analyse air temperature and relative humidity distribution in an experimental cold store fully loaded with apples by using both experimental and numerical (CFD) methods. An unsteady three-dimensional computational fluid dynamics model was developed to assess the distribution of temperature and relative humidity in a cold store fully loaded with Granny Smith apples. The storage temperature and relative humidity were maintained at 2 °C and 90%, respectively. The relative humidity and temperature were measured at 36 different points inside the cold store in three different planes. A three-dimensional mathematical model was built for the numerical needs. The numerical model was validated against experimental data from the same facility. Relative error of the model was calculated 13% for temperature and 1.43% for relative humidity. Numerical results obtained from the simulations agreed quite well with experimental data for temperature and relative humidity. Maximum differences were observed near the borders of the cold store which can be attributed to the stronger thermal gradients taking place on these surfaces. A more homogeneous distribution was achieved in the middle of the cold store both for air temperature and relative humidity leading to even smaller errors between measurements and simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.