Abstract

There is a need for a simplified computer-based design tool for subsurface flow constructed wetlands (CWs) which is based on process-based numerical models. Parameters of existing design guidelines and rules have been derived from experiments under specific conditions. Therefore designing CWs using these parameters is limited to these conditions (i.e., temperature, wastewater composition, filter material, etc.). Process-based numerical models describe the main processes in CWs in detail. If the design of CWs is based on these models it will be possible to design CWs for a variety of different boundary conditions and therefore the main limitation of existing design guidelines and rules could be overcome. The use of process-based models is currently limited mainly due to their complexity in structure and use. To make numerical modelling a useful and applicable tool for design, a simplified computer-based design tool that does not require special knowledge of numerical modelling is needed. Additionally, simple models for pre- and post-treatments are also required. Besides allowing designs for various boundary conditions, design tools based on process-based models can also predict the dynamic behaviour of the designed system thus showing e.g., the higher robustness of CWs against fluctuating inflows and peak loads compared to other treatment solutions. Such a tool could increase the quality of CW design and the acceptance and use of CW simulation in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.