Abstract

A dedicated blanking test (DBT) was designed to measure the bonding shear strength of a metallic hybrid sample. To identify the required design parameters of the rig, a macro numerical model was developed using Abaqus Finite element (FE) package. Copper clad aluminum hybrid samples fabricated by an axi symmetric forward spiral composite extrusion (AFSCE) process were analyzed using the developed numerical model. The effect of the design parameters including sample thickness, blanking clearance and the die and punch fillet radii were determined to ensure a pure shear blanking along the interface. The numerical results showed that the sample thickness, clearance and fillet radii have a significant effect on the measured bond shear strength and the location of the failure. The required rig was designed and composite copper clad aluminum bonding shear strength was experimentally determined based on the numerical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.