Abstract

In this paper, a numerical wave model based on the incompressible Reynolds equations and k– ε equations has been applied to estimate the impact of overtopping on levee during storm surge. The free surface locations are represented by volume of fluid function (VOF). The model was satisfactorily tested against empirical equation of overflow discharge at a vertical seawall, and experimental data of overtopping discharge at a sloping seawall. The validated model was used to simulate wave overtopping of the levee system during storm surge of Hurricane Katrina. The time history of wave profiles and velocity magnitude field in the vicinity of the levee are demonstrated and analyzed. It is concluded that the failure of parts of the levee system was caused by erosion during wave overtopping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.