Abstract

A detailed characterization of the input impedance of ultrawide-band (UWB) dielectric horn antennas is presented using the finite-difference time-domain (FDTD) technique. The FDTD model is first validated by computing the characteristic impedance of two conical plate transmission lines (including planar bow-tie antennas) and comparing the results to analytical solutions. The FDTD model is next used to calculate the surge impedance of dielectric horn antennas using the conical plates as launchers. Design curves of the surge impedance for different choices of geometries and dielectric loadings are provided. The modeled antennas are particularly attractive for applications such as UWB ground penetrating radars (GPR) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.