Abstract
Oil spills is one of the most important hazards in the estuarine and coastal water. In recent decades, engineers try to predict the status of oil slick to manage the pollution spreading. The prediction of oil slick transport is carried out mainly by means of numerical models. In the current study, the development and application of a two-phase fluid flow model to simulate oil transport in the marine environment are presented. Different transport and fate processes are included in the developed model. The model consists of the Lagrangian method for the advection process, the Random Walk technique for horizontal diffusion process and the empirical equations for the fate processes. The major forces for driving oil particles are fluid current, wind speed and turbulent flow. Therefore, the multi-component hydrocarbon method has been included to the developed model in order to predict fate processes. As prediction of particle velocity components is of major importance for oil slick advection, therefore the binomial interpolation procedure has been chosen for the particle velocity components computations. In addition, shoreline boundary condition is included in the developed model to simulate shore response to oil slick transport near the beaches. The results of the model applications are compared with the analytical solutions, experimental measurements and other numerical models cited in literature. Comparisons of different sets of results represent the capability of developed model to predict the oil slick transport. In addition, the developed model is tested for two oil spill cases in the Persian Gulf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.