Abstract
Wind-driven rain (WDR) is one of the most important moisture sources with potential negative effects on the hygrothermal performance and durability of building facades. The impact of WDR on building facades can be understood in a better way by predicting the surface wetting distribution accurately. Computational fluid dynamics (CFD) simulations can be used to obtain accurate spatial and temporal information on WDR. In many previous numerical WDR studies, the turbulent dispersion of the raindrops has been neglected. However, it is not clear to what extent this assumption is justified, and to what extent the deviations between the experimental and the numerical results in previous studies can be attributed to the absence of turbulent dispersion in the model. In this paper, an implementation of turbulent dispersion into an Eulerian multiphase model for WDR assessment is proposed. First, CFD WDR simulations are performed for a simplified isolated high-rise building, with and without turbulent dispersion. It is shown that the turbulence intensity field in the vicinity of the building, and correspondingly the turbulence kinetic energy field, has a strong influence on the estimated catch ratio values when turbulent dispersion is taken into account. Next, CFD WDR simulations are made for a monumental tower building, for which experimental data are available. It is shown that taking turbulent dispersion into account reduces the average deviation between simulations and measurements from 24 to 15 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.