Abstract

Hydropiercing is an efficient way of piercing holes in mass produced hydroformed parts with complex geometries. By driving piercing punches radially into a hydroformed and fully pressurized tube, holes will be pierced and extruded into the tube-wall. Recent experimental studies have shown that the formability of advanced high strength steel (AHSS) tubes can be increased with the application of internal pressure. In this study, three-dimensional finite element simulations of a tube hydropiercing process of a dual phase steel (DP600) were performed in LS-DYNA, using phenomenological, micromechanical and combined damage criteria. Damage was included in the numerical analysis by applying constant equivalent plastic strain (CEPS), the Gurson-Tvergaard-Needleman (GTN), and the Extended GTN (GTN+JC) model. In order to calibrate the parameters in each model, a specialized hole-piercing fixture was designed and piercing tests were carried out on non-pressurized tube specimens. Of the various ductile fracture criteria, the results predicted with the GTN+JC model, such as the punch load-displacement, the roll-over depth, and the quality of the clearance zone correlated the best with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call