Abstract

Laser-generation of ultrasound is investigated in the coupled dynamical thermoelasticity in the presented paper. The coupled heat conduction and wave equations are solved using finite differences. It is shown that the application of staggered grids in combination with explicit integration of the wave equation facilitates the decoupling of the solution and enables the application of a combination of implicit and explicit numerical integration techniques. The presented solution is applied to model the generation of ultrasound by a laser source in isotropic and transversely isotropic materials. The influence of the coupling of the generalized thermoelasticity is investigated and it will be shown, that for ultra high frequency waves (i.e. 100GHz) generated by laser pulses with duration in the picosecond range, the thermal feedback becomes considerable leading to a strong attenuation of the longitudinal bulk wave. Moreover, the coupling leads to dispersion influencing the wave velocities at low frequencies. The numerical simulations are compared to theoretical results available in the literature. Wave fields generated by a line focused laser source are presented by the numerical model for isotropic and for transversely isotropic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.