Abstract
The numerical simulation of penetration into rock is an important tool to gain insights into rock drilling mechanisms, since it can be exploited as an alternative to the expensive field testing. This research aims to present an innovative computer simulation of rock penetration process on the basis of the finite element method (FEM) coupled with smoothed particle hydrodynamics (SPH). An advanced material model, namely the Karagozian and Case Concrete (KCC) model, was employed for this purpose. The Punch Penetration test (PPT) was carried out on a medium strength sandstone for validating the numerical method. The comparison of the numerical and experimental results obtained concluded that the FEM coupled with SPH method in conjunction with the fully calibrated KCC material model is a reliable method for the study of rock penetration due to its ability to deal with large deformations and its realistic constitutive modeling. The modeling approach was finally applied to estimate the required force to penetrate an offshore reservoir rock block under the in-situ confining pressure with a double conical tool up to 5 mm depth. The effective stresses in sedimentary basins of Agosta and Dosso Campus at a depth of 3000 m below the seabed are considered as the confining pressures of this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.