Abstract
Deep geothermal energy is typically stored in granite reservoirs, and natural granite is highly heterogeneous because it is composed of different sizes and shapes of mineral grains. The mechanical properties of granite are significantly affected by its heterogeneity, and this may affect the fracture initiation pressure and fracture propagation direction during deep geothermal hydraulic fracturing. An extremely important aspect in examining rock heterogeneity corresponds to the relationship between its macromechanical properties and spatial arrangement of its mineral grains. In this study, a flat-joint model (FJM) in a three-dimensional particle flow code is used to examine the effect of heterogeneity [which is associated with the particle size distribution (PSD)] on the macromechanical properties of granite. Macromechanical properties of numerical models are calibrated via laboratory uniaxial compression tests and Brazilian tension tests. The results indicate that the microparameters of the FJM significantly influence rock mechanical properties, and the relationship between the microparameters and macromechanical parameters is affected by PSD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.