Abstract
Numerical modeling of dispersive shock waves called solibore in a stratified fluid is conducted. The theoretical model is based on extended version of the Korteweg-de Vries equation which takes into account the effects of cubic nonlinearity and Earth rotation. This model is now very popular in the physical oceanography. Initial conditions for simulations correspond to the real observed internal waves of shock-like shape in the Pechora Sea, the Arctic. It is shown that a sharp drop (like kink in the soliton theory) in the depth of the thermocline is conserved at a distance of one–three kilometers, and then it is transformed into dispersive shock waves (shock wave with undulations).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.