Abstract

An investigation of the influence of the relief of a planet on the global circulation of the Earth’s atmosphere is an important problem. Beyond doubt, mountains affect the global circulation of the troposphere, however, their influence on the global circulation of the stratosphere and mesosphere is not evident. In the present study, to investigate the influence of the relief of a planet on the global circulation of the Earth’s stratosphere and mesosphere, the non-hydrostatic mathematical model, developed earlier in the Polar Geophysical Institute, is utilized. Calculations were made for two distinct cases. The relief of the planet was taken into account for the first case. Unlike, the Earth’s surface was assumed to be smooth for the second case. Simulations were performed for the winter period in the northern hemisphere (January). Simulation results, obtained for both considered cases, are qualitatively similar at the levels of stratosphere and mesosphere, however, some noticeable distinctions exist. The horizontal domains exist, where the simulated horizontal and vertical components of the neutral wind velocity, obtained for two considered cases, differ noticeably at the levels of the stratosphere and mesosphere. Some of these horizontal domains are not connected with positions of mountains at the Earth’s surface. On the contrary, some of these horizontal domains are situated above mountains.

Highlights

  • IntroductionAn investigation of the planetary wind system of the Earth’s atmosphere is a very

  • To investigate how the relief of a planet can affect the formation of the large-scale global circulation of the stratosphere and mesosphere, the non-hydrostatic mathematical model of the planetary wind system of the Earth’s atmosphere, developed recently in the Polar Geophysical Institute (PGI), is utilized

  • It can be noticed that the existing hydrostatic general circulation models of the atmosphere produce the vertical component of the wind velocity having the values of several centimeters per second at levels of the middle atmosphere and lower thermosphere

Read more

Summary

Introduction

An investigation of the planetary wind system of the Earth’s atmosphere is a very. To investigate features of the planetary wind system of the Earth’s atmosphere the experimental and theoretical and computational studies may be applied. The study of the effect of the relief of a planet on the global circulation of the Earth’s atmosphere is close to investigations of surface-atmosphere interaction (for example, see [13] [14] [15] [16]). To investigate how the relief of a planet can affect the formation of the large-scale global circulation of the stratosphere and mesosphere, the non-hydrostatic mathematical model of the planetary wind system of the Earth’s atmosphere, developed recently in the Polar Geophysical Institute (PGI), is utilized

Description of the Applied Mathematical Model
Presentation and Discussion of Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.