Abstract

The aim of this paper is to numerically study the effects of breakwater steepness on the hydrodynamics of standing wave and scouring process in front of impermeable breakwaters. A two-dimensional hydrodynamics model based on the Reynolds Averaged Navier–Stokes (RANS) equations and the Volume of Fluid (VOF) method was developed and then combined with an empirical sediment transport model. Comparisons with an analytical solution and experimental data showed the present model is very accurate in predicting the near bottom velocity and capable of simulating the scour/deposition patterns consistent with experimental data. It was found that the additional terms of bottom shear stress in the momentum equations are necessary to produce a physical scouring pattern. Different breakwater steepnesses produce different characteristics of standing wave, the steady streaming system, and scouring pattern in front of the breakwaters, which also affects the correlations between them. An additional analysis of the turbulence field parameters and the sediment transport rate was also performed. All these important information will be presented in details in this paper and can be worthwhile for designing the breakwater in coastal areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.