Abstract

Due to the complex microstructure in aerogels and the intricate heat transfer mechanism of solid-gas coupling heat conduction, modeling of the gas-contributed thermal conductivity of this type of material is quite difficult. The present work introduces a novel numerical methodology for computing the gas-contributed thermal conductivity of aerogels by analyzing their microstructural characteristics and heat transfer mechanism of the thermal coupling between the gas phase and the solid backbone of the system. Specifically, structures of aerogels are reconstructed by an improved three-dimensional diffusion-limited cluster-cluster aggregation (DLCA) method, and the contribution of the solid-gas coupling heat transfer to the gas-contributed thermal conductivity of aerogels is quantified. The present numerical model is fully validated by the available experimental data for different aerogels with porosity ranging from 78% to 97.7%. The proposed numerical method is flexible and versatile because it is capable to account for both the geometrical and topological details of the aerogel structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.