Abstract
Research Article| October 01, 1992 Numerical modeling of the development of U-shaped valleys by glacial erosion JONATHAN M. HARBOR JONATHAN M. HARBOR 1Department of Geological Sciences and Quaternary Research Center, University of Washington, Seattle, Washington 98195 Search for other works by this author on: GSW Google Scholar GSA Bulletin (1992) 104 (10): 1364–1375. https://doi.org/10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2 Article history first online: 01 Jun 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation JONATHAN M. HARBOR; Numerical modeling of the development of U-shaped valleys by glacial erosion. GSA Bulletin 1992;; 104 (10): 1364–1375. doi: https://doi.org/10.1130/0016-7606(1992)104<1364:NMOTDO>2.3.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGSA Bulletin Search Advanced Search Abstract The steep-sided valleys and overdeepened basins of alpine landscapes are well-known products of glaciation, yet relatively little is known about how the dynamics of ice flow and glacial erosion interact to give rise to such landforms. By linking a finite-element model for ice flow through a glacier cross section with an erosion model, it is possible to investigate the development of one of the most striking glacial landforms, the U-shaped valley. In addition to providing a detailed understanding of landform development, such modeling provides a way to test current understanding of the controls on glacial sliding and erosion.To simulate valley development, I first model flow through an initial glacier cross section and calculate the glaciological parameters that govern erosion. I then numerically simulate erosion to produce a modified transverse profile, for which a new flow field and erosion pattern are computed. A number of iterations permits examination of the progressive transformation of cross-section form, which can be compared with field data.Model predictions of the cross-section flow field are in close accord with data from the Athabasca Glacier and include marked lateral variations in sliding velocity. With an erosion law dependent on basal velocity, the model predicts the rapid transformation of a V-shaped cross section into a recognizably glacial form over a time period on the order of 104 yr and the eventual development of a steady-state, quasi-parabolic glacier cross section. Better agreement with empirical data from glaciated valleys is obtained by including temporal variations in ice discharge, in order to mimic the characteristics of 100,000-yr glacial cycles. The high-discharge phase dominates form development, and, at low discharges, cross-section form is essentially inherited from the central part of the form that developed during the preceding high-discharge phase. This content is PDF only. Please click on the PDF icon to access. First Page Preview Close Modal You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.