Abstract

Some foundations are placed on or near slopes or excavations, such as roads in mountainous areas, tower footings for power lines, and bridge abutments. The design of foundation under these conditions is complex and the studies available in this regard are limited and concerned mostly about the determination of the reduction of the bearing capacity coefficients associated with the presence of the slope except for Meyerhof who was a pioneer in developing a theory in 1957 to determine the ultimate bearing capacity of a foundation near a slope. However, the theory was independent of the slope inclination. In this study, we attempted to numerical modeling of the behavior of a shallow foundation using the finite element technique together with Plaxis 8.2 software to simulate the case of a foundation near a slope, in terms of examining the bearing capacity of the foundation for given slope features, soil characteristics and geometry conditions located near a slope subjected to a centered and / or eccentric load. The results obtained confirm that the position of the eccentricity of the load relative to the head of the slope has a significant effect on the bearing capacity. Indeed, it becomes larger when the eccentricity is located far from the crest of the slope. Thus, the bearing capacity of a footing subjected to a centered load (e/B = 0) is greater than that of the same footing subjected to an eccentric load (e/B = 0.1). It is noted that the results obtained from the present study are in good agreement with those of the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call