Abstract

This chapter is devoted to the problems connected with numerical modeling of moving boundary ones. In particular the solidification and cooling processes proceeding in the system casting-mould are considered. The subject matter of solidification process modeling is very extensive and only the selected problems from this scope will be here discussed. From the mathematical point of view the thermal processes proceeding in the domain considered (both in macro and micro/macro scale) are described by a system of partial differential equations (energy equations) supplemented by the geometrical, physical, boundary and initial conditions. The typical solidification model bases on the FourierKirchhoff type equations, but one can formulate the more complex (coupled with the basic model) ones concerning the heat convection in a molten metal sub-domain, the changes of local chemical constitution of solidifying alloy (segregation process) etc. Here we limit oneself only to the tasks connected with the predominant heat conduction process, and (as the examples of various problems) the macro models of alloys solidification and the micro/macro models of pure metals crystallization will be presented, at the same time the direct and inverse problems will be discussed. In order to construct a numerical model and an adequate computer program simulating the course of problem considered, one must accept a certain mathematical description of the process (the governing equations). The next step is the transformation of this mathematical model into a form called the re-solving system constructed on the basis of a selected numerical method. After transformation of the algorithm developed into a computer program and supplementing it with suitable preand post-processing procedures (input data loading, graphic presentation of results, print-outs etc.), and carrying out of computations, one obtains the results including information concerning the transient temperature field, kinetics of solidification process, the temporary shapes of sub-domains etc. They may have a form of numerical print-outs, e.g., giving the temperature field at distinguished set of points or the volumetric fraction of solid state at the neighbourhood of these points. Numerical modeling of the heat and mass transfer in solidifying metal is a typical interdisciplinary problem and requires particular knowledge in the field of foundry practice, mathematics (a course in mathematical analysis offered in technical schools is quite sufficient here), thermodynamics (in particular heat transfer), numerical methods and, in the final stage, also programming and operation of computer equipment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call