Abstract
A lab-scale thermochemical reactor is designed and fabricated for the solar-driven thermal reduction of non-volatile manganese oxide to produce hydrogen by water splitting thermo chemical cycles. A time dependent three dimensional numerical model is developed to investigate the performance of the reactor since the chemical kinetics strongly depends on irradiance, temperature and fluid flow distribution around the reactant. Radiation heat transfer is calculated by using surface-to-surface (S2S) radiation model. Thermo-fluid flow, absorption efficiency and the temperature distribution of the sample are predicted as a function of time and the model is validated by experimental measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.