Abstract

Macroscopic electrical properties of carbon nanotubes are determined by their atomic and electronic structure. The analysis involves three interconnected phases. The Tight-Binding Approximation theory is first employed to predict the electronic band structure of the nanotube. Effects of nanotube wall curvature and the presence of an external electric field are included in the formulation. Subsequently the nanotube electrical resistance is calculated using the Wentzel—Kramers—Brillouin and Miller—Good approximations. The coupling effects between mechanical deformation and electrical resistance variations of a carbon nanotube are finally modeled. Numerical results illustrate the sensitivity of the band gap and the electrical resistance to nanotube configuration, and induced axial and torsional strain. The influence of wall curvature and an externally applied electric field on the tube resistance are also illustrated. Finally the differences in the prediction of electric resistance obtained by the Wentzel—Kramers—Brillouin and Miller—Good approximations are also shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.