Abstract

AbstractA mathematical model is developed for the dynamic analysis of earthquake‐triggered rapid landslides, considering two mechanically coupled systems: (a) the accelerating deformable body of the slide and (b) the rapidly deforming shear band at the base of the slide. The main body of the slide is considered as a one‐phase mixture of Newtonian incompressible fluids and Coulomb solids sliding on a plane of variable inclination. The evolution of the landslide is modeled via a depth‐integrated model of the Savage–Hutter type coupled with: (a) a cyclic hysteretic constitutive model of the Bouc–Wen type and (b) Voellmy's rheology for the deformation of the material within the shear band. The original shallow‐water equations that govern the landslide motion are appropriately reformulated to account for inertial forces due to seismic loading, and to allow for a smooth transition between the active and the passive state. The capability of the developed model is tested against the Higashi–Takezawa landslide. Triggered by the 2004 Niigata‐ken Chuetsu earthquake, the slide produced about 100m displacement of a large wedge from an originally rather mild slope. The mechanism of material softening inside the shear band responsible for the surprisingly large run‐out of the landslide is described by a set of equations for grain crushing‐induced pore‐water pressures. The back‐analysis reveals interesting patterns on the flow dynamics, and the numerical results compare well with field observations. It is shown that the mechanism of material softening is a crucial factor for the initiation and evolution of the landslide, while viscoplastic frictional resistance is a key requirement for successfully reproducing the field data. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call