Abstract

The Fricke dosimeter is a widely used gamma radiation dosimetry system. The system is based on the detection of Fe2+ to Fe3+ oxidation in an aqueous solution of ferrous sulfate in sulfuric acid, exposed to ionizing radiation in the presence of oxygen. The system is formed by a series of highly dependent chemical reactions. We developed a numerical model of coupled differential equations based on the mass balance; each equation incorporates information about the formation and breakdown of each molecule, as well as a term that represents an external source of radiation. The numerical model can reproduce the behavior of the experimental data at room temperature. We proposed a correction factor to simulate the behavior of the dosimeter at temperatures of 198 K and 77 K, respectively, when the system is in a thermal bath of dry ice or liquid nitrogen. This model could support a variety of experimental challenges for radiation at low temperatures in different fields of industry and could have relevance for astrobiology problems by offering the possibility of simulating reactions in comets and other exoplanetary bodies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.