Abstract

This paper presents the numerical modeling and simulations of PZT-induced Lamb wave propagation in plate-like structures by using the spectral finite element method. A novel spectral plate finite element, which can efficiently model the three-dimensional (3D) behavior of Lamb waves, is proposed. In the formulation, linear displacement distributions in the thickness direction are assumed for both the PZT layer and the base plate. A way to avoid the thickness locking is proposed and used in the formulations. Two examples, one for the validation of the proposed two-dimensional (2D) spectral finite element and the other for the demonstration of crack detection in plates, are presented and discussed. The contact between the two faces of crack is considered. Numerical results show that (1) only the anti-symmetric mode is prone to thickness locking thus remedy should be made only on this part, (2) the proposed 2D spectral finite element can adequately model the Lamb wave propagation in plate-like structures and the complex scattering for the crack, and (3) crack location can be well determined by a PZT-induced Lamb wave-based diagnosis algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call