Abstract

Mounting evidence has linked long- and short-term exposure to particulate air pollution with the incidence and exacerbation of asthma in children, but the biological pathogenesis is unclear. We examined the deposition of particles in the airways of asthmatic children. A planar and symmetric model of airways for 4-year-old asthmatic children was considered. Airflow and particle deposition in the upper (G3-G6) and lower (G9-G12) conducting airways were numerically investigated using computation fluid dynamics (CFD) method. We considered the manifestation of moderate (30% reduction in airway diameter) and severe (60% reduction) asthma. Micron particles (1–10 µm) were considered. We found that particle deposition in the asthmatic children was significantly higher than that in healthy children. The deposition efficiency increased slowly with particle size for healthy children, but increased rapidly for asthmatic children, such that smaller particles could be deposited in the conducting airways of asthmatics. For healthy children, particles were deposited by inertial impaction and gravitational sedimentation respectively in the upper and lower airways, but deposited by inertial impaction in asthmatic children. The severity of the asthma increased the particle deposition in the airways. Our study indicated that asthmatic children were more susceptible to the effect of particulate air pollution. The constricted airways increased the particle deposition by inertial impaction, which may be the biological pathogenesis that causes the hospitalization of asthma in children. Avoiding exposure during air pollution events will be an effective measure to reduce the asthma attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.