Abstract

Laser beams which carry spin and orbital angular momentum are desired in many applications. They are usually created by manipulating the laser output or by inserting optical components in the laser cavity. Due to their high susceptibility to external fields and birefringent nature, control over the emitted light could be achieved by inserting liquid crystals into the laser cavity. In this work we numerically study lasing in selected nematic liquid crystal director profiles. We use custom written FDFD code to calculate emergent electromagnetic eigenmodes, and show how they are affected by the nematic director field. Control over lasing is of a particular interest with the aim to path the way towards the creation of general arbitrary shaped laser beams.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call