Abstract

To investigate the feasibility of the use of foams with an interconnected spherical pore structure in heat transfer applications, models for heat transfer and pressure drop for this type of porous materials are developed. Numerical simulations are carried out for laminar multidirectional thermofluid flow in an idealized pore geometry of foams with a wide range of geometry parameters. Semiheuristic models for pressure drop and heat transfer are developed from the results of simulations. A simplified solid-body drag equation with an extended high inertia term is used to develop the hydraulic model. A heat transfer model with a nonzero asymptotic term for very low Reynolds numbers is also developed. To provide hydraulic and heat transfer models suitable for a wide range of porosity, only a general form of the length-scale as a function of pore structure is defined a priori, where the parameters of the function were determined as part of the modeling process. The proposed ideal models are compared to the available experimental results, and the source of differences between experimental results and the ideal models is recognized and then calibrated for real graphitic foam. The thermal model is used together with volume-averaged energy equations to calculate the thermal dispersion in graphitic foam. The results of the calculations show that the linear models for thermal dispersion available in literature are oversimplified for predicting thermal dispersion in this type of porous material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.