Abstract

BackgroundThe global incidences of dengue virus have increased the interest in studying and understanding the mosquito population dynamics. It is predominantly spread by Aedes aegypti in the tropical and sub-tropical countries in the world. Understanding these dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. For this reason, a new model has been proposed to investigate the population dynamics of mosquitoes in a city.MethodsThe present paper discusses the numerical modeling of population dynamics of Ae. aegypti mosquitoes in an urban neighborhood of a city using the finite volume method. The model describes how populations spread through the city assisted by the wind. This model allows incorporating external factors (wind and chemical insecticides) and topography data (streets, building blocks, parks, forests and beach). The proposed model has been successfully tested in examples involving two Brazilian cities (City center, Juiz de Fora and Copacabana Beach, Rio de Janeiro).ResultsInvasion phenomena of Ae. aegypti mosquitoes have been observed in each of the simulations. It was observed that, inside the blocks, the growth of the population for both winged and aquatic phase causes an infestation of Ae. aegypti in a short time. Within the blocks the mosquito population was concentrated and diffused slowly. In the streets, there was a long-distance spread, which was influenced by wind and diffusion with a low concentration of mosquito population. The model was also tested taking into account chemical insecticides spread in two different configurations. It has been observed that the insecticides have a significant effect on the mosquito population for both winged and aquatic phases when the chemical insecticides spread more uniformly along all the streets in a neighborhood of a city.ConclusionsThe presented methodology can be employed to evaluate and to understand the epidemic risks in a specific region of the city. Moreover the model allows an increase in efficiency of the existing mosquito population control techniques and to theoretically test new methods before involving the human population.

Highlights

  • The global incidences of dengue virus have increased the interest in studying and understanding the mosquito population dynamics

  • In the second and third examples, we investigate the population dynamics of Ae. aegypti mosquitoes in the city of Juiz de Fora with and without the use of chemical insecticides

  • We present the numerical results for Copacabana Beach in the city of Rio de Janeiro

Read more

Summary

Introduction

The global incidences of dengue virus have increased the interest in studying and understanding the mosquito population dynamics It is predominantly spread by Aedes aegypti in the tropical and sub-tropical countries in the world. Understanding these dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. Dengue is considered as one of the major public health problems by the World Health Organization (WHO) in the world [1] It is the most rapidly spreading vectorborne disease in the world [2] with nearly 400 million people infected each year and an estimated 25,000 deaths; this leads to an enormous economic cost in affected countries, comparable to that of malaria [3]. Chikungunya and yellow fever are both painful and debilitating diseases which can prove fatal and have both experienced epidemics in recent years [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call