Abstract
The determination of the minimum uncut chip thickness is essential in micro machining in order to achieve desired surface integrity and accuracy. The parameters being considered in determination the minimum uncut chip thickness include the cutting tool geometry, workpiece material, cutting parameters and so on. In this paper, five different materials including OFHC Copper, Al 7050, AISI 4340, Ti-6Al-4V and IN 718 with unequal materials’ properties were investigated to find materials parameters’ effect on the minimum uncut chip thickness. An Arbitrary Lagrangian Eulerian (ALE)-based numerical modeling is proposed to determine the minimum uncut chip thickness for the five different materials by changing depth-of-cut. The Johnson-Cook (J-C) constitutive model is employed to describe the work material behavior. Results show that the flow stress of different materials has significant effect on the minimum uncut chip thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.