Abstract

Local scour below a piggyback pipeline in steady currents is investigated numerically. A piggyback pipeline comprises two pipelines that are arranged in the so-called piggyback configuration with the small pipeline being located directly above the large pipeline. The Reynolds-averaged Navier–Stokes equations and the transport equation for suspended sediment concentration are solved using a finite element method. The bed scour profile is determined through solving sediment mass conservation equation. The numerical model is validated against experimental data available in literature on scour below a single pipeline. Computations are carried out for the diameter ratio [the small pipe diameter (d) to the larger one (D) ] of 0.2 and the gap ( G , between the two pipelines) to the large diameter ratio G∕D ranging from 0.0 to 0.5. It is found that the flow and the scour profiles are influenced significantly by the gap ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.