Abstract

AbstractThis paper presents a Smoothed Particle Hydrodynamics (SPH) solution for the Kelvin–Helmholtz Instability (KHI) problem of an incompressible two‐phase immiscible fluid in a stratified inviscid shear flow with interfacial tension. The time‐dependent evolution of the two‐fluid interface over a wide range of Richardson number (Ri) and for three different density ratios is numerically investigated. The simulation results are compared with analytical solutions in the linear regime. Having captured the physics behind KHI, the effects of gravity and surface tension on a two‐dimensional shear layer are examined independently and together. It is shown that the growth rate of the KHI is mainly controlled by the value of the Ri number, not by the nature of the stabilizing forces. It was observed that the SPH method requires a Richardson number lower than unity (i.e. Ri≅0.8) for the onset of KHI, and that the artificial viscosity plays a significant role in obtaining physically correct simulation results that are in agreement with analytical solutions. The numerical algorithm presented in this work can easily handle two‐phase fluid flow with various density ratios. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.