Abstract

AbstractThe present study attempted to numerically simulate the process in detail by developing an appropriate physical modeling and the corresponding numerical analysis for injection molding and injection/compression molding processes of centergated disks. In Part I, a physical modeling and associated numerical analysis of injection molding with a compressible viscoelastic fluid model are presented. In the distribution of birefringence, the packing procedure results in the inner peaks in addition to the outer peaks near the mold surface, and values of the inner peaks increase with the packing time. Also, values of the density in the core region increase with the packing time. From the numerical results, we also found that birefringence becomes smaller as the melt temperature gets higher and that it is insignificantly affected by the flow rate and the mold temperature. As far as the density distribution is concerned, mold temperature affects the distribution of density especially near the wall. But it was not significantly affected by flow rate and melt temperature. Numerical results of birefringence coincided with experimental data qualitatively, but not quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.