Abstract
Abstract— Large meteorite impacts, such as the one that created the Vredefort structure in South Africa˜2 Ga ago, result in significant heating of the target. The temperatures achieved in these events have important implications for post‐impact metamorphism as well as for the development of hydrothermal systems. To investigate the post‐impact thermal evolution and the size of the Vredefort structure, we have analyzed impact‐induced shock heating in numerical simulations of terrestrial impacts by projectiles of a range of sizes thought to be appropriate for creating the Vredefort structure. When compared with the extent of estimated thermal shock metamorphism observed at different locations around Vredefort, our model results support our earlier estimates that the original crater was 120–160 km in diameter, based on comparison of predicted to observed locations of shock features. The simulations demonstrate that only limited shock heating of the target occurs outside the final crater and that the cooling time was at least 0.3 Myr but no more than 30 Myr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.