Abstract

This paper considers the problem of a fluid-driven fracture propagating in a permeable poroelastic medium. We develop a zero-thickness finite element to model the fracture. The fracture propagation is governed by a cohesive zone model and the flow within the fracture by the lubrication equation. The hydro-mechanical equations are solved with a fully coupled approach, using the developed zero-thickness element for the propagating fracture and conventional bulk finite elements for the surrounding medium. The numerical results are compared to analytical asymptotic solutions under zero fluid lag assumption in the four following limiting propagation regimes: toughness-fracture storage, toughness-leak-off, viscosity-fracture storage and viscosity-leak-off dominated. We demonstrate the ability of our cohesive zone model in simulating the hydraulic fracture in all these propagation regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.