Abstract
A numerical investigation into the fluid flow and heat transfer process in a 3D-printed shell-and-tube heat exchanger was carried out. The shell side of the heat exchanger was inserted with octahedral lattice frame porous material to enhance the heat transfer. In order to avoid establishing a complex grid system, the porous material of the shell side was modeled by a porous media model. The non-equilibrium model was adopted for the modeling of the heat exchange between the solid and fluid in porous media. An experimental investigation was carried out to validate the feasibility of this approach. The result indicates that the simplified approach is capable of providing an appropriate prediction of the pressure drop and heat transfer efficiency with moderate computational resources. The average error of pressure loss and heat transfer effectiveness is within 4% and 6.1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.