Abstract

Abstract This paper is the first in a three part series describing numerical simulations of hailstorms and hailstone growth using a two-dimensional, time-dependent cloud model. In this model. cloud water, cloud ice and rain are treated via standard parameterization technique The precipitating ice field is discretized into 20 logarith-mically spaced size categories which evolve in, and interact with the time-dependent dynamic framework. Ice particles are generated by the freezing of raindrops and via a parameterization of the Bergeron process. Growth of these ice particles is based on wet and dry growth concepts applied to the continuous accretion process. The model has been used to simulate a severe supercellular hailstorm from the National Hail Research Experiment These simulations include cases assuming various microphysical configurations of the model along with simplified cloud seeding experiments The simulations indicate many areas of agreement between the model results and observation chief among th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call