Abstract

A comprehensive model has been developed to simulate the transient, coupled transport phenomena occurring during a gas metal arc welding process. This includes the arc plasma; melting of the electrode; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool fluid flow and dynamics. The fluid flow and heat transfer in both the arc and the metal were simulated and coupled through the boundary conditions at the arc-metal interface at each time step. The detached droplet in the arc and the deformed weld pool surface were found to cause significant changes in the distributions of arc temperature and arc pressure, which are usually assumed to have Gaussian distributions at the workpiece surface. The comprehensive model could provide more realistic boundary conditions to calculate the heat transfer and fluid flow both in the plasma and the metal. The predicted arc plasma distribution, droplet flight trajectory, droplet acceleration and final weld bead shape compared favorably with the published experimental results. This paper was to present the heat transfer and fluid flow in the arc plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call