Abstract
Abstract Galactic cosmic rays (GCRs) are affected by solar modulation while they propagate through the heliosphere. The study of the time variation of GCR spectra observed at Earth can shed light on the underlying physical processes, specifically diffusion and particle drifts. Recently, the AMS-02 experiment measured with very high accuracy the time variation of the cosmic-ray proton and helium flux between 2011 May and 2017 May in the rigidity range from 1 to 60 GV. In this work, a comprehensive three-dimensional steady-state numerical model is used to solve Parker’s transport equation and reproduce the monthly proton fluxes observed by AMS-02. We find that the rigidity slope of the perpendicular mean free path above 4 GV remains constant, while below 4 GV, it increases during solar maximum. Assuming the same mean free paths for helium and protons, the models are able to reproduce the time behavior of the p/He ratio observed by AMS-02. The dependence of the diffusion tensor on the particle mass-to-charge ratio, A/Z, is found to be the main cause of the time dependence of p/He below 3 GV.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.