Abstract

Free overfall is treated by using two-dimensional steady potential flow theory. Based on the theory of the boundary value problem of analytical function and the substitution of variables we derive the boundary integral equations in the physical plane for solving the free overfall in a rectangular channel. A numerical iterative method has been developed to solve these boundary integral equations. The free water surface profiles, pressure distribution, and the end-depth ratio are calculated for a wide range of bed slopes, bed roughness, and incoming upstream Froude number. The computed results agree well with the available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.