Abstract
Numerical simulations of explosive fragmentation munitions presented in this work integrate three-dimensional axisymmetric hydrocode analyses with analytical fragmentation modeling. The developed analytical fragmentation model is based on the Mott’s theory of break-up of cylindrical “ring-bombs” (Mott, 1947), in which the average length of fragments is a function of the radius and velocity of the ring at the moment of break-up, and the mechanical properties of the metal. The fundamental assumption of the model is that the fragmentation occurs instantly throughout the entire body of the shell. Adopting Mott’s critical fracture strain concept (Mott, 1947), the moment of the shell break-up is identified in terms of the high explosive detonation products volume expansions, V/V0. The assumed fragmentation time determined from the high-speed photographic data of Pearson (1990) had been approximately three volume expansions, the fragmentation being defined as the instant at which the detonation products first appear as they emanate from the fractures in the shell. The newly developed computational technique is applied to both the natural and preformed explosive fragmentation munitions problems. Considering relative simplicity of the model, the accuracy of the prediction of fragment spray experimental data is rather remarkable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.