Abstract
A passive actuation technique, that entails covering the suction side of an aerofoil with a poro-elastic carpet, is presented. Numerical modeling of the coupled fluid-structure interaction problem is performed for a low Reynolds number regime, characteristic of micro aerial vehicles. The immersed boundary technique is employed, which offers the advantage of using Cartesian grids for complex geometries. By suitably selecting the characteristics of the carpet, to synchronise characteristic time scales of the fluid and the structural systems, significant drag reduction and/or lift enhancement can be achieved, associated with modifications of the length scales of the shed vortices and a mild intensification of their intensity. A parametric analysis shows that such a coating is able to affect the topology of the flow in the proximity of the rear of the aerofoil, by adapting spontaneously to the separated flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.