Abstract
The performance of the floating geosynthetic-encased stone column–(GESC)-supported embankments with basal reinforcement was examined using a 3-dimensional (3D) hydro-mechanical coupling finite element model. Comprehensive parametric analyses were performed on the governing factors such as consistency of substratum soil, tensile stiffness of basal reinforcement and encasement, and embankment height. The results indicated that a higher embankment load is transferred to the surrounding soil when a GESC was constructed on a weaker substratum. This causes larger increases in the settlement and lateral displacement of the GESC on the weaker substratum. The tensile strain of the basal reinforcement and hoop strain in the encasement also increases. In addition, high tensile stiffness in basal reinforcement and encasement is necessary to ensure feasible settlement reduction in a floating GESC-supported embankment with basal reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.