Abstract

The development of a robust and reliable material model for fabrics used to prevent fan blade out events in propulsion engines has significant importance in th e design of fan containment systems. Currently Kevlar is the only fabric approved by the Federal Aviation Administration (FAA) to be used in fan -containment systems. However, very little work has been done in building a mechanistic -based material behavior model especially one that can be used to quantify the behavior of Kevlar when subjected to high -velocity projectiles. Experimental static and high strain rate tensile tests have been conducted at Arizona State University (ASU) to obtain the material proper ties of Kevlar fabric. In this paper we discuss the development and verification of a constitutive model for dry fabrics for use in an explicit finite element program. Results from laboratory tests such as Tension Tests including high -strain rate tests, P icture Frame Shear Tests, and Friction Tests yield most of the material properties needed to define a constitutive model. The material model is incorporated in the LS -DYNA commercial program as a user defined subroutine. The validation of the model is car ried out by numerically simulating actual ballistic tests conducted at NASA -GRC and fan blade out tests conducted at Honeywell Aerospace (Propulsion Engines).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call